Overview

In a global perspective, the effect of TB on the health and economy of the world is staggering. It has been estimated that 2 billion people worldwide have active TB. This represents one-third of the world's population. In 2011, 8.7 million people around the world became sick with tuberculosis, and 1.4 million died of TB-related illnesses. The return of TB, teamed with the spread of HIV/AIDS and the prevalence of MDR-TB, has created a serious, and potentially deadly, healthcare problem. All healthcare providers must be aware of the dangers for patients, family, and self. Only meticulous attention to methods of prevention and treatment can help control this killer disease. This course will review the incidence, etiology, methods of transmission, types of tuberculosis, signs and symptoms, methods of diagnosis, prophylaxis, treatment, and management of adult and pediatric patients with pulmonary and extrapulmonary tuberculosis.

Education Category: Infection Control / Internal Medicine
Release Date: 10/01/2013
Expiration Date: 09/30/2016

Audience

This course is designed for all healthcare workers who may have contact with a patient with tuberculosis, including hospital staff and community healthcare providers.

Accreditations & Approvals

NetCE is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. NetCE is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. NetCE is approved by the California Nursing Home Administrator Program as a provider of continuing education. Provider number 1622. NetCE is approved to offer continuing education through the Florida Board of Nursing Home Administrators, Provider #50-2405. NetCE is accredited by the International Association for Continuing Education and Training (IACET). NetCE complies with the ANSI/IACET Standard, which is recognized internationally as a standard of excellence in instructional practices. As a result of this accreditation, NetCE is authorized to issue the IACET CEU. This program has been pre-approved by The Commission for Case Manager Certification to provide continuing education credit to CCM® board certified case managers. The course is approved for 5 CE contact hour(s). Activity code: H00018110. Approval Number: 150004031. To claim these CEs, log into your CE Center account at www.ccmcertification.org.

Designations of Credit

NetCE designates this enduring material for a maximum of 5 AMA PRA Category 1 Credit(s)™. Physicians should claim only the credit commensurate with the extent of their participation in the activity. NetCE designates this continuing education activity for 5 ANCC contact hour(s). NetCE designates this continuing education activity for 1.5 pharmacotherapeutic/pharmacology contact hour(s). NetCE designates this continuing education activity for 6 hours for Alabama nurses. Successful completion of this CME activity, which includes participation in the evaluation component, enables the participant to earn up to 5 MOC points in the American Board of Internal Medicine's (ABIM) Maintenance of Certification (MOC) program. Participants will earn MOC points equivalent to the amount of CME credits claimed for the activity. It is the CME activity provider's responsibility to submit participant completion information to ACCME for the purpose of granting ABIM MOC credit. Completion of this course constitutes permission to share the completion data with ACCME. This continuing education activity is approved for 6.5 CE credits by the Association of Surgical Technologists, Inc., for continuing education for the Certified Surgical Technologist, Certified Surgical First Assistant and Associate members. This recognition does not imply that AST approves or endorses any product or products that are included in the enduring materials. This home study course is approved by the Florida Board of Nursing Home Administrators for 5 credit hour(s). This course is approved by the California Nursing Home Administrator Program for 5 hour(s) of continuing education credit - NHAP#1622005-5416/P. California NHAs may only obtain a maximum of 10 hours per course. AACN Synergy CERP Category A. NetCE is authorized by IACET to offer 0.5 CEU(s) for this program.

Individual State Nursing Approvals

In addition to states that accept ANCC, NetCE is approved as a provider of continuing education in nursing by: Alabama, Provider #ABNP0353, (valid through December 12, 2017); California, BRN Provider #CEP9784; California, LVN Provider #V10662; California, PT Provider #V10842; Florida, Provider #50-2405; Iowa, Provider #295; Kentucky, Provider #7-0054 through 12/31/2017.

Special Approvals

This activity is designed to comply with the requirements of California Assembly Bill 1195, Cultural and Linguistic Competency.

Course Objective

Although the incidence of tuberculosis (TB) has begun to decrease in the United States, it continues to rise disproportionately among foreign-born, immunocompromised, and minority groups. In light of these changes, the purpose of this course is to provide healthcare professionals with the necessary information regarding TB diagnosis, treatment, and transmission prevention in order to decrease the morbidity of the disease among their patient populations and facilities.

Learning Objectives

Upon completion of this course, you should be able to:

  1. Discuss the historical background of tuberculosis.
  2. Describe the modes of transmission for tuberculosis.
  3. Identify the three stages of tuberculosis.
  4. List the signs and symptoms of pulmonary tuberculosis.
  5. Identify persons at high risk of contracting pulmonary tuberculosis.
  6. Describe the methods of diagnosis used for suspected tuberculosis, including the necessity of a translator for assessing non-English proficient patients.
  7. Characterize the important forms of extrapulmonary tuberculosis.
  8. Discuss the suggested treatment options for pulmonary tuberculosis.
  9. Describe approaches to chemoprophylaxis of tuberculosis.
  10. Identify patient teaching goals that help the patient understand and cope with the diagnosis of tuberculosis.

Faculty

Marilyn Fuller Delong, MA, BSN, RN, received her basic nursing education at St. Luke's School of Nursing in Cedar Rapids, Iowa, her BSN from Coe College and her MA from California State University, Long Beach. She has worked throughout the United States both clinically and as an educator. Her continuing education classes have focused on the case management aspects of the care of orthopedic and pulmonary patients, with particular focus on the long-term care needs of the elderly and disabled.

Faculty Disclosure

Contributing faculty, Marilyn Fuller Delong, MA, BSN, RN, has disclosed no relevant financial relationship with any product manufacturer or service provider mentioned.

Division Planners

John M. Leonard, MD

Jane C. Norman, RN, MSN, CNE, PhD

Chris Keegan, CST, MS

Division Planners Disclosure

The division planners have disclosed no relevant financial relationship with any product manufacturer or service provider mentioned.

About the Sponsor

The purpose of NetCE is to provide challenging curricula to assist healthcare professionals to raise their levels of expertise while fulfilling their continuing education requirements, thereby improving the quality of healthcare.

Our contributing faculty members have taken care to ensure that the information and recommendations are accurate and compatible with the standards generally accepted at the time of publication. The publisher disclaims any liability, loss or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents. Participants are cautioned about the potential risk of using limited knowledge when integrating new techniques into practice.

Disclosure Statement

It is the policy of NetCE not to accept commercial support. Furthermore, commercial interests are prohibited from distributing or providing access to this activity to learners.

Table of Contents

Technical Requirements

Supported browsers for Windows include Microsoft Internet Explorer 9.0 and up, Mozilla Firefox 3.0 and up, Opera 9.0 and up, and Google Chrome. Supported browsers for Macintosh include Safari, Mozilla Firefox 3.0 and up, Opera 9.0 and up, and Google Chrome. Other operating systems and browsers that include complete implementations of ECMAScript edition 3 and CSS 2.0 may work, but are not supported.

#94551: Tuberculosis: An Update

  • Back to Course Home
  • Participation Instructions

HISTORICAL BACKGROUND

Tuberculosis (TB), also historically called the "white plague" and "consumption," is a disease that has plagued the citizens of nearly every nation in the world for centuries. It has produced acute, chronic, and latent diseases involving every organ in the body, although the lungs remain the primary site of infection. The disease is caused by a group of similar bacilli, most commonly Mycobacterium tuberculosis, which is often abbreviated as M. tuberculosis or as MTB.

Evidence of TB dating back 6,500 years has been found in archaeological digs. There are signs of the organism in the remains of mummified Egyptians and mention of it in ancient Chinese and Sanskrit written records. Hippocrates made the first clinically detailed description between 460 and 375 B.C.E. He called the disease "phthisis." During the 16th to the 19th centuries, TB was epidemic in Europe, causing the death of as many as one in four persons.

Starting in Northern Europe more than 500 years ago, the disease spread steadily across the continent but did not move into Russia until the late 1800s. New Guinea, the last place left uninfected, developed TB for the first time in the 1940s.

Historically, epidemics of TB have been lengthy, lasting as long as centuries in some cases. At one time, it was thought that the illness was brought on by generalized weakness or starvation and that only artists, writers, or alcoholics would become infected. In time, as people of higher station in life were seen to develop TB, this notion proved to be false [12].

TB has been prevalent in America since colonial times, and the United States has waged a public health campaign against TB for more than 150 years. Until the early part of the 20th century, TB was largely a disease of the poor. It spread quickly through the industrial northeastern states due to poor nutrition and close living and working quarters, which encouraged cross-infection in those with very little resistance. Northern Europeans, who had been exposed for generations, had developed some resistance, but hundreds of thousands of others who had not quickly became infected. Despite public health measures, periodic epidemic spikes in the incidence of infection occurred often up until the 1930s.

In 1882, one of the most significant accomplishments in the history of medicine occurred when Dr. Robert Koch identified the tubercle bacillus. Public health officials developed strict rules of cleanliness, and many people were forced to go to "consumptive prison." Unfortunately, this resulted in a common prejudice directed toward TB victims and their families. In 1906, immigration laws were written denying admission to this country by anyone with active TB. In 1912, laws were enacted preventing TB patients from attending schools or renting apartments.

Eventually, sanitaria were opened to provide a more humane form of quarantine, and this proved to be an effective means of decreasing the incidence of disease. The success of sanitarium care was not so much because it provided a cure for this difficult disease, but because it effectively segregated infected persons from the general public. At the sanitaria, many forms of treatment were tried, including surgical pneumothorax and lobectomy. Some patients even had ping-pong balls inserted into infected pulmonary cavities in a desperate attempt to control progression and effect a cure.

Christmas Seals, which originated in the early 1900s, helped to pay for the treatment of those with TB and for education to help prevent the disease. In 1944, Dr. Selman Waksman discovered that streptomycin, the first of the aminoglycoside antibiotics, was effective in treating TB. This understandably raised much hope at the time, and Dr. Waksman eventually was awarded the Nobel Prize in Medicine for his discovery. Soon, however, isolates of the organism began to show resistance to streptomycin, limiting its effectiveness. Para-aminosalicylic acid (PAS) was added, and while it was effective for a time, the organism once again mutated sufficiently to resist treatment.

In the 1950s, two major developments greatly advanced the treatment and control of TB. First, the discovery of isoniazid (INH) provided the first highly effective, inexpensive, and safe drug able to regularly produce a clinical cure. Second, the use of a multidrug regimen (with INH) was shown to enhance the therapeutic effect, to reduce the risk of developing drug resistance on therapy, and to render patients noninfectious within a relatively short period of time. As a consequence, sanitaria soon began to close their doors.

Systematic surveillance of TB was introduced in the United States in 1953. In the decades following, the reported yearly incidence of new cases declined steadily until 1985, at which time it leveled off, then rose slightly [31]. In response, the U.S. Public Service pooled local, state, and federal resources in an effort to identify the causes for the increase, enhance surveillance, and establish treatment guidelines. This leveling trend, which proved to be transient, could be attributed to several factors: the advent of the human immunodeficiency virus (HIV) outbreak, an increase in the prevalence of poverty and homelessness, and the influx of foreign-born persons into the country, particularly from Asia and the Pacific Islands.

As a nationally notifiable disease, the health departments of all 50 states and the District of Columbia electronically report all TB cases to the Centers for Disease Control and Prevention (CDC). Federal funds are designated for TB control, including treatment, and administered through state health departments. Fortunately, and in part as the result of current treatment and public health control measures, the incidence of TB has decreased by almost 42% between 1993 and 2011 [23]. Ongoing diligence is nevertheless required, as the incidence of multidrug-resistant tuberculosis (MDR-TB) has become a serious threat to elimination of the disease [23].

EPIDEMIOLOGY

In a global perspective, the effect of TB on the health and economy of the world is staggering. It has been estimated that 2 billion people worldwide have become infected with M. tuberculosis and are therefore at risk for developing active clinical disease within their lifetime. This represents one-third of the world's population. In 2011 alone, 8.7 million new cases of active clinical disease and 1.4 million deaths from TB-related causes were reported to the World Health Organization (WHO) [14]. The WHO estimates that a new TB infection occurs every second, and more people die from TB worldwide than from any other curable disease [10]. TB is the leading cause of death of people who are infected with human immunodeficiency virus (HIV) or acquired immune deficiency syndrome (AIDS); even among immunocompetent people, 5% to 15% will develop some form of tuberculosis [1].

In 2012, a total of 9,951 TB cases were reported in the United States, a 6.1% decline from the 2011 rate, continuing the decrease in incidence rates for 20 straight years [54]. This represents an incidence of 3.2 per 100,000 population. Incidence varied significantly among states, from 0.4 per 100,000 population in West Virginia to 9.0 per 100,000 in Alaska. Seventeen states had higher rates in 2012 than those reported in 2011. California, Florida, New York, and Texas each had more than 500 cases in 2012. Combined, these four states account for 49.9% of all cases in the United States [54].

Conditions that are believed to have been catalysts for the resurgence of TB are [54]:

  • Increased poverty, injection drug use, and homelessness

  • Increased numbers of residents in long-term care facilities

  • Foreign-born persons originating from countries where TB is endemic

  • Immunocompromised individuals, particularly those with HIV/AIDS

  • Failure of patients to complete TB drug treatments

Records show that foreign-born persons and racial/ethnic minority populations continue to be affected disproportionately [54]. Pulmonary TB is also seen commonly among people living in overcrowded housing with poor sanitation. Due to air travel and immigration, disease that is prevalent in developing countries often becomes a worldwide problem. In 2012, foreign-born citizens of the United States had a TB rate almost 11.5 times higher than those who were born in the United States [54]. Five countries of origin account for more than 50% of immigrant TB cases: Mexico, the Philippines, India, Vietnam, and China [54].

According to a report published by the CDC, progress has been made in treating MDR-TB, but there is still concern about extensively drug-resistant TB (XDR-TB), which is very difficult and costly to treat [8].

ETIOLOGY

Of the species in the genus Mycobacterium, several have been grouped as the Mycobacterium tuberculosis complex: M. tuberculosis, which is the causative agent for nearly all the TB in humans; M. bovis, found in cattle, which is rare in the United States because of laws requiring the pasteurization of milk; M. africanum, a disease primarily in equatorial Africa, may also be found in those who have immigrated from Africa; and M. microti, which is not pathogenic for immunocompetent humans. Within the last 15 years, four additional species belonging to the complex, M. pinnipedii, M. canettii, M. caprae, and M. mungi, have been identified [36,37,38,39].

Tubercle bacilli are slender rods with a slight curve, measuring 2 to 4 microns in length. They are aerobic, non-spore forming, non-motile, and weakly gram-positive.

The cell wall of M. tuberculosis grows in snake-like cords and is the most complex of all bacteria. By electron microscopy, three layers are visible. The innermost layer, which is next to the cell membrane, consists of cross-linked peptidoglycans that give the cell its shape and rigidity. The middle layer is an arabinogalactan polymer laced with long-chain fatty acids, called mycolic acids. The outermost layer is composed of mycosides. The mycolic acids of the various species of mycobacteria are unique to that particular species, which allows differentiation of characteristic fatty acid fingerprints, identifiable by chromatography and DNA testing [22].

TB is often referred to as having been caused by an "acid-fast bacillus." The bacilli are difficult to stain because of the high lipid content of their cell walls, and once stained, they resist discoloration with acid-alcohol. There are other bacteria that are weakly acid-fast, but only M. tuberculosis is so strongly stained. Because of this, the acid-fast stained sputum smear is the traditional method for preliminary detection of pulmonary TB. It is easy to perform, inexpensive, and widely used around the world. The specificity of a positive smear in a patient with compatible symptoms and x-ray findings is nearly 100%, but the sensitivity is only about 30% to 50% in specimens of sputum that are later cultured as positive for M. tuberculosis.

METHODS OF TRANSMISSION AND RISK FACTORS

Although primarily affecting the pulmonary system, TB may spread to other organs. M. tuberculosis is spread by inhalation of droplets containing bacteria aerosolized from infected persons with active (usually cavitary) lung disease who are untreated or undertreated.

Inhaled droplet nuclei containing tuberculous bacilli accumulate in the alveoli of the middle or lower lobes of the lung. They replicate and gain access to regional lymphatic channels, mediastinal lymph nodes, and thence to the thoracic duct and blood stream, by which they are disseminated throughout the body. In response, the immune system targets these scattered vascular foci of infection, first with macrophages that surround and engulf the organisms, then lymphocytes, and finally a characteristic, focal inflammatory reaction termed a granuloma. A healthy granulomatous reaction terminates active infection, usually before the person is symptomatic, though it does not eliminate all bacilli. In time, the granuloma becomes encapsulated, effectively sealing off any remaining viable organisms. Encapsulated granulomas are termed tubercles. With age, they usually calcify, and larger ones are visible later by chest x-ray and tissue scans. Most healthy persons remain asymptomatic throughout life, the only evidence of prior infection being the calcified granuloma or positive skin test.

As indicated, infected but asymptomatic individuals may harbor viable organisms within macrophages contained by inactive granulomas, maintaining this dormant state (latent TB) for decades. Many new active cases of TB are considered to actually represent reactivation of latent infection under conditions of impaired host cellular immunity. As such, these cases are referred to as reactivation TB. Infection in healthcare workers often occurs from exposure to such patients prior to diagnosis [7].

Groups considered high-risk for reactivation or newly acquired active TB include the elderly, injecting drug users, and the chronically ill, such as those with cancer or HIV. These persons are susceptible because of one of the following reasons:

  • Decline in pulmonary mucociliary transport, which results in diminished clearance of bacteria and other foreign substances from the lungs

  • Ineffective cough reflex with an inability to clear the lungs

  • Altered immune system with a depressed serum IgM with age, but unchanged IgA and IgG

  • Reduced cell-mediated immunity

Most communicable diseases are transmitted in a variety of ways. They may be passed from person to person through blood or other body fluids, via fomites, or by air droplets. For years, those caring for TB patients were careful to dispose of or decontaminate the clothing, linens, eating utensils, and other belongings of TB patients. However, it was discovered that TB is spread almost entirely through the inhalation of aerosolized droplet nuclei carrying the live M. tuberculosis bacillus.

Droplets originate in the airway, including the mouth, pharynx, larynx or lungs. Those patients who have cavitary lung lesions that open into an airway have the means to spread great quantities of bacilli. Cavities encourage growth because they are warm, wet, dark, oxygen-rich environments. In persons with open cavitary disease, simple coughing, sneezing, laughing, or singing can release a myriad of infected particles into the air.

However, compared to other infectious diseases, TB is not easy to contract. The average time of exposure until acquired infection is about two months. There have been reports of infection occurring in much less time. In one well-reported incident, a passenger on an airline was very ill with TB and coughed throughout the entire flight. Later, it was learned that fellow passengers on the plane had become infected with TB [7]. This is a rare occurrence, but it serves as a reminder to those in the healthcare professions. Caring for patients with TB can be a health risk, and proper isolation techniques for prevention must be employed when working with known or suspected cases of active infection [7].

In the United States, there has been a marked increase in infection among minorities 25 to 44 years of age, likely due to the increased prevalence of HIV infection in this age group [24]. TB is concentrated in groups characterized by disproportionately greater percentages of African Americans and Hispanics, increased prevalence of HIV infection, crowded living conditions, and inadequate access to health care. One report stated that as many as 18% of persons living in homeless shelters test positive for TB [13]. Prison inmates and migrant farm workers are also at increased risk for TB due to crowded housing conditions.

TB is generally a problem at the extremes of life in the United States. In 2010, pediatric TB cases comprised 5.7% of the total number of reported cases [25]. While the risk of disseminated TB is higher in children younger than 4 years of age, children in the United States who are younger than 14 years of age have the lowest incidence rate (0.9 per 100,000) [24]. Elderly patients at greatest risk are those residing in nursing homes or other group settings. These people are at risk not only for primary TB from direct transmission, but also for reactivation TB [21].

STAGES AND TYPES OF TUBERCULOSIS

There are three stages of infection seen in persons with pulmonary TB: primary or initial infection; latent or dormant (asymptomatic) infection; and secondary or reactivation infection. All three must be considered and treated when patients present with TB-specific symptoms.

PRIMARY INFECTION

When droplet nuclei containing live M. tuberculosis are inhaled, they will most likely be deposited on the bronchial mucosa. The bacilli may then be swept out of the respiratory tract by mucociliary action or move on to the terminal bronchioles and alveoli. If this occurs, the bacteria will begin multiplying and develop a focus of infection. This usually takes place in the lower lobes of the lung, where most ventilation occurs.

As indicated, the characteristic pathologic lesion in TB is the granuloma, composed of macrophages and lymphocytes in varying degrees of active phagocytosis and degeneration. When the inflammatory reaction is prolonged and progressive, as with poorly contained or reactivation infection, the granuloma becomes sizable and undergoes central necrosis. On pathologic examination, this central necrotic debris is often described as "caseous" because it resembles crumbling cheese.

The initial, small focal granulomatous pneumonitis associated with primary infection, while contained, often calcifies in time and is a visible coin-shaped lesion on chest x-ray. This calcified focus carries the term Ghon lesion; when seen in association with calcification of the adjacent mediastinal lymph node, it is referred to as the Ranke or primary complex—a finding highly specific for prior TB infection.

M. tuberculosis organisms may move from the hilar and mediastinal lymph nodes through the thoracic duct into the bloodstream, allowing it to spread throughout the body. They deposit and proliferate in sites that are oxygen-dense (e.g., kidneys, vertebral bodies, the epiphyses of long bones). Usually, cell-mediated immunity develops and stops further growth and spread. If that fails, the infection progresses and the illness may assume a chronic, active, disseminated form (miliary TB) that can, in time, lead to central nervous system involvement and meningitis.

In the early postprimary infection period, weeks to months after the development of effective cell-mediated immunity, a tuberculous pleural effusion may develop, even in apparently healthy young adults. The pathogenesis is considered to be a delayed hypersensitivity reaction to mycobacterial antigens released into the pleural space from the rupture of a subpleural, poorly-contained granuloma. Tuberculous pleural effusion may be caused by relatively few bacilli, making diagnosis difficult. In young, otherwise healthy adults, this form of TB may remit spontaneously (without treatment); however, it does portend an increased risk for reactivation TB later in life.

LATENT/ASYMPTOMATIC PULMONARY INFECTION

If the immune process works well and stops the proliferation of bacilli after the initial primary infection, healing occurs in the lungs, in the lymph nodes, and in the metastatic sites of infection. Depending upon the patient's age and presence of other infections, a latent period ensues. This period lasts a lifetime in 85% to 90% of those infected. During this asymptomatic phase, the only evidence of infection with M. tuberculosis may be skin-test reactivity to tuberculin [22]. Some patients will have fine, linear scarring in the lung or a focal calcification (Ghon lesion) visible usually in a middle or lower lobe, a sign of the struggle between M. tuberculosis and the cellular immune response.

SECONDARY OR REACTIVATION TB

It is estimated that 10 to 15 million persons in the United States are infected with the latent or asymptomatic form of TB [13]. Recurrence of the active disease occurs in 10% to 15% of infected patients, half of whom reactivate within the first two years after the primary infection. The cause for the reactivation is usually a breakdown in the patient's immune system rather than reinfection from newly inhaled bacteria. In the United States, the highest frequency of recurrent or reactivation TB is in middle-aged and older adults and immigrants [3].

VARIATIONS IN IMMUNE RESPONSE

The diagnosis of TB may be missed, or not even considered, because of the uncommon presentation it makes in some persons. For example, an elderly person may develop what is thought to be community-acquired lower lobe pneumonia. Diagnosis is confirmed by chest x-ray, but the infection may not respond to the usual antibiotic treatments. The "pneumonia" may actually have occurred as the result of a lymph node rupturing into a bronchus, a consequence of TB.

In another scenario, a patient with AIDS develops a lower lobe infiltrate. The chest x-ray reveals no granuloma and no cavities, so TB is not entertained as a possible diagnosis. This occurs because the inflammatory response is so blunted in AIDS that rapid proliferation and spread M. tuberculosis within the involved lobe occurs before an established, healthy granulomatous reaction can develop. It is important, therefore, to consider TB as a possible diagnosis, even when the symptoms and radiographic signs do not fit the typical scenario.

PULMONARY TUBERCULOSIS

SIGNS AND SYMPTOMS

The early symptoms of active pulmonary TB are often so subtle as to be missed at first by most patients. Because of this, they will frequently have difficulty pinpointing exactly when their illness began. Some patients without obvious symptoms are diagnosed solely by a routine chest x-ray. For those who do have symptoms, the most common manifestations are gradual onset and progression of fever, malaise, cough, anorexia, and weight loss. The fever is one that is not so high as to be noticed or to be disquieting. When the fever breaks during the early morning hours, it is often associated with "night sweats." Weight loss may result from the infectious process itself, or it can be a sign that malnutrition and depletion of immune reserves preceded, and to some extent caused, the infection.

Cough is generally nonproductive at first, then later productive of purulent sputum. With progressive cavitation in the lung, the patient develops hemoptysis. Bleeding results from the necrosing walls of cavitary lesions in the lungs or from the rupture of small venules in the walls of inflamed bronchi.

Chest pain, usually pleuritic in nature, arises from infection of the pleural surface and the resulting effusion. If there is extensive lung destruction, dyspnea will also occur, which eventually leads to respiratory failure and death.

In most cases, physical examination is not a helpful diagnostic tool, as the clues are simply not specific enough to pinpoint TB. Rales and other breath sounds may or may not be heard. When fever is out of proportion to respiratory symptoms and the chest x-ray findings are nonspecific, especially if there is lymphadenopathy or hepatosplenomegaly, one should consider extrapulmonary, disseminated TB.

METHODS OF DIAGNOSIS

Chest x-ray provides the best early clue to diagnosis, as it is nearly always abnormal in patients with active pulmonary TB. The progression of TB can also be monitored by chest x-rays, as the films have a different appearance at different stages of the disease. Pleural effusions are common during the primary phase, particularly in adolescents and young adults. Hilar and mediastinal adenopathy are prominent, especially in children. In progressive primary TB, the chest x-ray shows infiltrates with consolidation in the lower- and mid-lung areas. After the primary infection heals, there are often apical changes, and calcification may appear in the lungs and lymph nodes [50].

Reactivation TB often presents as upper lobe infiltrates and cavitation in the apical and posterior segments of the upper lobes. It is rare to have the disease occur in the anterior segment. Reactivation TB may also appear in the superior segments of the lower lobes. As the disease progresses, infection spreads to adjacent areas of the lung, and the x-ray may show "fluffy" patches of infiltrate [50]. Computed tomography (CT) and magnetic resonance imaging (MRI) may also be used in assessing the areas affected by the disease. CT scans may provide a more sensitive evaluation of changes in the lungs. Magnetic resonance and positron emission tomography (PET) are more helpful with extrapulmonary TB.

Laboratory findings in TB are much the same as with any other chronic infection. There is normochromic normocytic anemia, the white blood cell count may be normal or mildly elevated, and commonly, one finds reactive thrombocytosis. Pancytopenia, disseminated intravascular coagulation (DIC), and elevated hepatic transaminases may occur in miliary TB. Urinalysis shows pyuria without bacteriuria if there is renal TB. Hyponatremia may result from the syndrome of inappropriate antidiuretic hormone secretion (SIADH), either as a result of pulmonary or central nervous system infection. Hypercalcemia may or may not be present, but when it is, usually it is mild.

Screening for TB infection should include those persons identified as high risk (Table 1). It is also important to screen any others who may potentially come into contact with those in high-risk groups; this would include emergency medical personnel, firefighters, and those employed in prisons, homeless shelters, or other group housing facilities.

HIGH-RISK GROUPS TO SCREEN FOR TUBERCULOSIS

HIV-infected persons
Close contacts of persons with active, infectious TB
Persons with conditions that weaken their immunity, thereby putting them at greater risk for contracting the disease (includes chronic renal failure, diabetes, prolonged steroid use, immunosuppressive therapy, malnutrition, gastrectomy)
Injecting drug users
Residents and employees of long-term care facilities, prisons, mental institutions, homeless shelters, or other group homes
Emergency medical personnel
Firefighters
Persons spending time in countries with a high prevalence of TB
Foreign-born persons originating from countries with a high prevalence of TB

Tuberculin Skin Testing

There are several methods of skin testing for TB. The Aplitest and Sclavo test use dried purified protein derivative (PPD), and the Mono-Vacc Test uses liquid old tuberculin (OT). The once popular Tine test, which is no longer considered reliable, involved pressing a four-pronged device into the forearm. The Tine test uses acacia as a stabilizer; however, many people are allergic to acacia, which causes delay and confusion in diagnosis.

The preferred way to perform mass screenings is to use the Mantoux method of skin testing (Table 2). The test indicates those who have been infected with the organism as soon as 2 to 10 weeks after exposure.

TUBERCULIN SKIN TEST

When applying a skin test using the Mantoux technique, the injection should be made with a single-use, disposable tuberculin syringe. Draw up 0.1 ml of PPD, containing 5 TU. The skin should be cleansed, as with any injection, and the skin stretched taut.
Using a 26- or 27-gauge needle, the tuberculin syringe should be held close to the skin so the needle hub touches it as the needle is inserted into the skin, with the bevel up. This decreases the needle angle at the skin surface and helps to insure the fluid is injected just beneath the surface of the skin into the dermis to form a wheal, taking care not to inject subcutaneously.
The site of the injection should be circled with a pen and the location documented on the patient's medical record (in case the pen circle should wash off).
Examine the site of the Mantoux intradermal injection within 48 to 72 hours of injection. Always use sufficient lighting to examine the area. Use a pen to outline the diameter of induration (firm-to-hard zone of elevation or swelling). The area of erythema (redness) is not measured, and erythema without induration is of no significance. Use a standard centimeter rule or a clear plastic ruler that has been marked with circles of various diameters. Place the ruler over the outlined induration to measure its diameter. The presence and degree of induration is an indicator of prior TB infection and, to some extent, the probability of current active TB.
A reaction of <5 mm is negative. Reactions >10 mm are "positive." An intermediate reaction of 5-10 is suspicious for prior infection in high-risk persons.

PPD, also called tuberculin, is available in three strengths: 1 tuberculin unit (TU), 5 TU, and 250 TU. The weakest is 1 TU, which is rarely used except in persons suspected to be at risk for a strongly positive reaction. The 5-TU strength is the standard for routine skin tests, in part because at this dose, the Mantoux test delivers a defined, well-controlled dose of antigen that is most reliable.

With the Mantoux technique, 0.1 ml of PPD, containing 5 TU, is injected intradermally into the volar or dorsal surface of the forearm. In 48 to 72 hours, the results are measured and recorded. The 250-TU strength may be useful for selected patients in whom the 5-TU test is negative. However, at the higher TU strength, a positive result is less specific; mildly positive reactions may represent previous vaccination against TB or prior infection with nontuberculous mycobacteria.

When the skin test is positive in a person previously known to have been negative, the person is said to have "converted." The reaction is measured in millimeters of induration, not by redness at the site. Generally, the larger the induration, the greater the likelihood of TB; however, this does not always hold true. More importantly, a negative reaction does not rule out latent or active infection. Someone whose immune system has been weakened by disease, age, or drugs may have a weak or negative reaction even though they are infected. It is important to remember that the test is primarily used for assessing the probability of exposure to M. tuberculosis in the past and the possibility of latent infection, not the presence of active disease [11,18].

Older persons who were infected many years previously may have sustained a natural waning of immunity, resulting in a false-negative skin test. Because of this, a two-step procedure is often done on those older than 50 years of age who are suspected of being infected. If the first test is negative, then it is repeated one or two weeks later. If the second test is positive, it means the initial dose stimulated the latent cellular immunity, resulting in a positive reaction to repeat antigenic exposure. This is often referred to as the "booster phenomenon."

In suspect cases, the significance of a negative tuberculin skin test can be further assessed by testing for anergy. A control test is done using antigens to which virtually all adults have been previously exposed to determine if there is any cellular immune response. The antigens most commonly used as controls are Candida albicans, Trichophyton, mumps virus, and tetanus. They are administered using the same Mantoux technique. An induration occurs if a person has been sensitized to the antigen and has an intact, healthy cell-mediated immune response. Failure to obtain a reaction from a control site is an indicator of depressed immune system (or anergy). There is some controversy among physicians regarding anergy testing, and studies have brought the usefulness of the testing into question. At this time, routine anergy testing is not recommended [29,40].

Sputum Smear and Culture

When skin testing, chest x-rays or clinical symptoms suggest TB, the next step is to obtain sputum specimens for smear and culture. This will help confirm the diagnosis and rule out other similar diseases.

Sputum specimens must be properly obtained in order to be useful. The technique used must produce the best specimen and must also prevent the care provider from exposure to the tubercle bacillus. Effective specimens can help the practitioner to confirm a diagnosis of pulmonary TB, determine an infection's susceptibility to drugs, and assess the response to treatment. Acid-fast bacilli should decline in number after treatment has begun, and sputum smear and culture become negative in a matter of a few weeks. If this does not occur, it may signify lack of compliance or the development of MDR-TB. For diagnostic purposes, morning sputum samples are collected daily for 3 to 5 days. This increases the opportunity for finding the M. tuberculosis organism.

Procuring Sputum Specimens

When procuring a sputum specimen, it is important that patients understand the instructions so that their cooperation is obtained. If they speak a language other than English, it will be necessary to find a translator. A good indicator of patient understanding is to have them repeat the instructions to the practitioner. If the patient has difficulty learning the steps to the procedure, they may need to be instructed on each step as it occurs.

The optimal time to collect a specimen is early morning, after the patient has had nothing by mouth for about 8 hours. The mouth should be rinsed with water to reduce contamination of the sample with the normal flora of the mouth, but the teeth should not be brushed prior to the collection.

Patients are provided a sterile container with a screw-top lid. They should avoid putting the rim of the jar inside their lips, but rather hold it below their bottom lip. Specimens should not be saliva or nasopharyngeal secretions, but should come from the lungs after a deep cough. A sample of 5–10 cc (1–2 teaspoons) of sputum is adequate. Patients should be instructed to notify the practitioner as soon as the sample has been obtained so it can be sent to the laboratory promptly.

In some cases, a patient may not have adequate secretions to produce a specimen or there may be reason to need an immediate specimen. In those instances, sputum may be obtained by induction. This procedure carries a higher risk of contamination because an aerosol is used. The procedure should be done only in an acid-fast bacillus isolation room or sputum induction booth that meets the 2001 CDC guidelines [33]. Staff should wear high efficiency particulate air (HEPA) or N95 respirators that meet CDC guidelines for personal protection against TB and have been certified by the National Institute of Occupational Safety and Health. Access to the room is customarily restricted for one hour after the procedure is completed, allowing an adequate air exchange (six complete exchanges) to clean the air of all TB particles.

Sputum by induction is also best obtained early in the morning, as in normal sputum collection. A solution of 3% saline is introduced through a nebulizer for 15 to 20 minutes or until a specimen is produced. Hand-held ultrasonic nebulizers are most effective at maximizing the aerosol delivery and produce the best specimens.

If a patient has a history of asthma, a bronchodilator may be administered before the procedure to protect against bronchospasm. If not successful, the process should not be repeated until the patient has been given an opportunity to rest.

Comatose patients, others who are unable to cough, and children may require gastric aspiration to check for acid-fast bacilli in the stomach through nasotracheal or tracheostomy suctioning. When these procedures are done, the same protective measures should be followed as those described for the induction procedure. A positive smear is not as meaningful in this case because other acid-fast organisms may reside in the stomach, but a culture growth will confirm diagnosis [15].

DNA Probes

In the past, the only widely available test for a rapid diagnosis of TB was the acid-fast stain. Identification of M. tuberculosis by traditional culture techniques, followed then by biochemical tests, required 4 to 8 weeks for completion. Radiometric culture methods combined with a DNA probe for an M. tuberculosis-specific RNA sequence provides the means for rapid identification and confirmation within 1 to 3 weeks. However, newer DNA tests can confirm the diagnosis of TB within hours, which is significantly faster than the longer measures traditionally used. The ability to rapidly diagnose this disease has the obvious advantages of early specific therapy and reduced risk for transmission.

The U.S. Food and Drug Administration (FDA) has approved three nucleic acid amplification (NAA) tests for use in detecting M. tuberculosis in procured specimens. The first is the Amplicor Test, which is based on the polymerase chain reaction. It amplifies a specific portion of the RNA from the TB organisms and measures the results with a photometer. The findings of this test are usually available within 6 to 7 hours. The FDA has approved the Amplicor Test only for smear-positive specimens [26,46].

The second approved probe is the enhanced M. tuberculosis direct (MTD-2) test, which uses transcription-mediated amplification in order to identify and magnify the RNA target. Results are generally available within 3 to 4 hours. This test is approved for the detection of tuberculosis in both smear-positive and smear-negative cultures [26]. The third NAA test is the Xpert MTB/RIF Assay, which is able to detect the presence of M. tuberculosis organisms as well as resistance to rifampin [55]. This automated, cartridge-based system requires a sputum sample and results are available within two hours.

Non-FDA approved NAA tests (often called "in-house" tests) have also been used [46]. As of 2009, the CDC recommends that NAA testing should be performed on at least one respiratory specimen from each patient with signs and symptoms of pulmonary TB for whom a diagnosis of TB is being considered but has not yet been established and for whom the test result would alter case management or TB control activities [46].

These tests are also able to differentiate the DNA of different species of M. tuberculosis, also called DNA fingerprinting or genotyping. Because most strains of bacteria share patterns, it has been difficult to follow the person-to-person transmission of certain strains. Using genotyping, researchers have shown that each strain has a distinct DNA fingerprint and that all samples sharing the same DNA fingerprint were isolated from people who live together. This will help track the path of transmission and aid public health researchers to pinpoint patterns of infection, which in turn helps to plan prevention programs that target the areas of heightened infection rates.

Immunoassay for M. tuberculosis antigens is also being developed. Mycobacterial antigens can be found in the cerebrospinal fluid (CSF) of patients with tuberculous meningitis, making immunoassay an attractive diagnostic tool. Biochemical tests using gas chromatography and mass spectrometry are sensitive and accurate, but the equipment costs make widespread use impractical. Most research into immunoassay for diagnosis of TB has focused on blood testing. In 2007, a study of immunoassay of broncho-alveolar lavage fluid found that the technique had the potential to be a useful tool [45]. However, a 2010 study of the Diagnos TB AG immunoassay found that the test was not helpful in the rapid diagnosis of TB [47]. More research is necessary to evaluate the efficacy of such tests.

In 2001, the FDA approved QuantiFERON-TB, a test that detects latent TB infection by measuring the release of interferon-gamma in whole blood in response to stimulation by purified protein derivative [41]. The FDA approved the new, potentially more useful, QuantiFERON-TB Gold In-Tube test (QFT-GIT), in 2007. This test is said to quantify an immune system's response to peptides, which imitate TB proteins, not found in either the bacille Calmette-Guérin (BCG) vaccine or in non-tuberculosis mycobacterium [6]. In July 2008, the FDA approved another interferon gamma release assay for the rapid detection of TB: the T-SPOT.TB test (also referred to as T-Spot) [49]. This test can detect increases in the number of cells that secrete interferon gamma after stimulation with antigen as compared to the media control [49]. The CDC guidelines for the use of the interferon gamma release assays are available online at http://www.cdc.gov/mmwr/pdf/rr/rr5905.pdf[48].

EXTRAPULMONARY TUBERCULOSIS

Although primarily seen as a pulmonary disease, TB can affect any body part. Historically, TB of the tonsils, lymph nodes, abdominal organs, bones, and joints was common. In the past, this was often related to ingestion of milk contaminated by M. bovis. Since pasteurized milk became an industry standard, the threat of that sort of extrapulmonary TB has not been seen.

Often, in cases of extrapulmonary TB, local trauma, aging, or an acquired immunodeficiency results in the breakdown of a latent tuberculous granuloma in a distant organ such as lymph node, bone, liver, or spleen. This can lead to a sustained, progressive local organ infection, often complicated by periodic bacillemia and generalized (disseminated) tuberculosis.

TB OF THE CENTRAL NERVOUS SYSTEM

Central nervous system tuberculosis is among the least common but most devastating of extrapulmonary forms of infection. It develops in the setting of sustained bacillemia that may follow primary or late reactivation tuberculosis, in the course of which bacilli, and in turn fresh tubercles, are distributed throughout the brain and meninges. The chance location, progression, and rupture of a meningeal tubercle into the subarachnoid space initiates meningitis. The onset and progression of illness follows three stages over 3 to 5 weeks: a prodome of malaise, fever, and vague headache; followed by severe headache, neck discomfort, nausea, vomiting, and cranial nerve signs; then drowsiness, stroke-like signs, stupor, and coma. Early clinical diagnosis and empiric therapy before confirmation of the diagnosis is critical. The diagnosis is made by smear, culture, and polymerase chain reaction test of serial CSF specimens. On occasion, central nervous system TB produces an abscess or large granulomatous mass lesion (tuberculoma) within the brain without meningitis. As with other brain "tumors," these patients present with headache, seizures, and/or focal weakness.

RENAL TB

The kidney is the most common site for extrapulmonary TB. From there, the bacilli spread to the bladder and, in men, to the prostate, seminal vesicles, and epididymis. Often, the first sign of the infection is an enlarging scrotal mass. Pyelography will then often reveal a cavitary lesion of the renal parenchyma and irregularities of the ureters. Diagnosis is easily confirmed by urine smear and culture.

GENITOURINARY TB

After the onset of menarche, the fallopian tubes become quite vascular, making them vulnerable to hematogenous secondary TB salpingo-oophoritis. Systemic symptoms are lacking; the condition usually presents as a chronic pelvic inflammatory disease, with tubal scarring and infertility. Urine cultures often are not effective in diagnosis of genital TB in women; generally, a laparoscopy, laparotomy, or uterine scrapings are required.

TUBERCULOUS PERITONITIS

Tuberculous peritonitis arises from the repture of an abdominal lymph node into the peritoneal space or by spread from a tuberculous salpingo-oophoritis. Symptoms range from fatigue and abdominal pain and tenderness to an acute abdomen. Diagnosis is usually made from paracentesis and peritoneal needle biopsy.

TUBERCULOUS PERICARDITIS

TB infection of the membrane surrounding the heart usually results from a spread of the infection from a mediastinal lymph node or tuberculous pleuritis to the pericardial sac. The illness begins insidiously and results largely from chronic inflammatory constriction of the pericardium that limits cardiac function. Symptoms include intermittent fever and chest pain, signs of heart failure, venous jugular distention, and distant heart sounds, occasionally by a pericardial friction rub. Surgical pericardiectomy is usually required for diagnosis and effective management.

TUBERCULOUS LYMPHADENITIS

Tuberculous lymphadenitis presents with malaise, low-grade fever, and enlarged superficial or deep lymph node enlargement. Clinical signs include mildly tender, slowly progressive swelling of the involved nodes. A classic form is cervical tuberculous lymphadenitis (also known as scrofula) in which patients have developed slowly enlarging matted nodes that are palpable and in time visible, with distortion of the overlying skin. Untreated, draining skin fistulas may develop, from which organisms can be seen on smear and cultured.

TB OF BONES AND JOINTS

TB affecting the bones occurs easily in children because the epiphyses are open and the blood supply is rich, facilitating dissemination of the bacilli to the long bones and vertebrae. Infection may also spread into the articular capsule. The joints most commonly involved are those that bear weight, but bones of the wrist, hand, and elbow also may be involved. Diagnosis is made by biopsy and/or synovial fluid analysis.

GASTROINTESTINAL (GI) TB

TB infection of the GI tract occurs only after an extended period of time and characteristically takes the form of a localized inflammatory mass, most often in the terminal ileum or right colon. Imaging studies show changes suggestive of Crohn's disease or colon cancer. The diagnosis is often made only after surgical intervention. Treatment usually involves resection of the involved area, followed by antituberculous chemotherapy.

HEPATIC TB

TB of the liver is found in patients with advanced pulmonary TB or miliary TB. There are tubercles in the liver that can spread to the gallbladder, leading to obstructive jaundice. When the primary site of infection (lung or other site) is treated and cured, the liver will also return to a normal state.

MILIARY TB

Under conditions of poor immune function or trauma, previously quiescent TB foci may destabilize, releasing viable bacilli into the bloodstream. Unchecked, this leads to a sustained, active systemic infection with small metastatic lesions throughout the body. Although not immediately evident on chest x-ray, eventually the films will show multitudes of small nodules spread throughout both lungs, having the appearance of millet seeds. Prominent symptoms include chronic fever, night sweats, weakness, malaise, weight loss, and dyspnea. Bone marrow and liver biopsies are often taken to complete the diagnosis.

TREATMENT

Some sort of antituberculous chemotherapy has been in existence since the 1940s. With appropriate antibiotic treatment, TB can be cured in most people. Six drugs are rated as first-line because they are frequently effective and have low toxicity for most TB patients. A successful treatment outcome depends greatly on patient compliance with the prescribed combination of drugs (Table 3 and Table 4). When patients do not take the medications as prescribed, resistance develops and the bacterial isolate evolves into MDR-TB. Successful treatment of MDR-TB is difficult and involves the use of less effective, potentially more toxic medications that must be administered for as long as two years. Even more severe is XDR-TB, which is caused by an organism that resists even the second-line agents [5,9]. The effort continues to discover new antituberculous agents that are inexpensive and well tolerated. This is especially important given the increasing prevalence of multi-drug resistant organisms worldwide [2,4,19].

TREATMENT OF DRUG-SUSCEPTIBLE TUBERCULOSIS IN ADULTS

DrugDaily Dose (Adult)Adverse/Toxic Reactions
First-Line Drugs
Isoniazid5 mg/kg PO/IM (up to 300 mg)Hepatotoxicity, hepatitis, peripheral neuropathy, hypersensitivity, flu-like symptoms
Rifampin10 mg/kg PO/IV (up to 600 mg)Orange discoloration of urine and other secretions, nausea, vomiting, hepatitis, hepatotoxicity, fever, purpura
Rifabutin300 mg PORash, GI disturbance, neutropenia Not approved by FDA for treatment of TB
Rifapentine600 mg PO twice weekly or 600 mg once weekly during continuation phaseRed-orange stain on body fluids, hyperuricemia, abnormal liver function tests
Ethambutol15–25 mg POOptic neuritis, decreased visual acuity, color blindness, skin rash
Pyrazinamide15–30 mg/kg PO (up to 2 g)Hepatotoxicity, hyperuricemia, skin rash, arthralgias, GI irritation
Second-Line Drugs
Streptomycin15 mg/kg IM (up to 1 g) 10 mg/kg up to 750 mg if older than 60 years of ageOtotoxicity, nephrotoxicity, hypokalemia
Ethionamide15–20 mg/kg PO (up to 1 g in 3 to 4 divided doses)GI disturbance, hepatotoxicity, depression, drowsiness, hypothyroidism, metallic taste
Para-aminosalicylic acid8–12 g PO in 2 to 3 divided dosesGI disturbance, sodium load, hepatotoxicity
Kanamycin<15 mg/kg IM/IV (up to 1 g)Auditory and renal toxicity, hypokalemia, vestibular toxicity Not approved by FDA for treatment of TB
Cycloserine10–15 mg/kg PO (up to 1 g)Psychosis, personality changes, rash, impaired coordination, convulsions, depression
Capreomycin1 g IMAuditory and renal toxicity, vestibular toxicity, hypokalemia

PEDIATRIC TREATMENT FOR TUBERCULOSIS

DrugDaily DoseComments
Isoniazid10–15 mg/kg in 1 to 2 divided doses
Not to be given to children younger than 1 year of age
Not to exceed 300 mg/day
Rifabutin10–20 mg/kgNot to exceed 300 mg/day
RifapentineNot recommended for children
Rifampin10–20 mg/kgNot to exceed 600 mg/day
Streptomycin20–40 mg/kgNot to exceed 1 g/day
Ethambutol15–20 mg/kg
Not recommended in children younger than 13 years of age
Not to exceed 1 g/day
Pyrazinamide20–40 mg/kgNot to exceed 1 g/day
Ethionamide15–20 mg/kg in 2 to 3 divided dosesNot to exceed 1 g/day
Para-aminosalicylic acid200–300 mg/kg in 2 to 4 divided dosesNot to exceed 10 g/day
Cycloserine10–20 mg/kg in 2 divided dosesNot to exceed 1 g/day
Kanamycin15 mg/kg every 8 to 12 hours in divided doses
Capreomycin15–30 mg/kgNot to exceed 1 g/day

The usual pattern of drug treatment involves a two-step process. Initially, therapy is intense and aimed at quickly reducing the large number of organisms. High doses of multiple drugs are given daily for the quick "knockdown." The second phase then provides maintenance therapy long enough to eradicate the dormant bacilli.

According to the CDC, because of the increase in MDR-TB, most patients should be started on a four-drug regimen of isoniazid, rifampin, pyrazinamide, and either ethambutol or streptomycin [30]. This regimen should continue until drug susceptibility results are obtained, after which the regimen may be altered as appropriate.

Customarily, chemotherapy for 6 to 9 months is sufficient to cure pulmonary TB. Treatment for less than 6 months most often results in relapse. After 1 month of therapy, patients should have a sputum smear. Then, another sputum check should be undertaken every 2 to 4 weeks until two consecutive specimens are negative. Conversion to a smear-negative state occurs in 90% of patients after 3 months of treatment. Lack of conversion raises the question of compliance and/or presence of drug-resistant organisms. A follow-up sputum check is also done 6 months after completion of treatment in order to screen for the 1% to 3% of patients who relapse.

FIRST-LINE DRUGS

Isoniazid

Isoniazid, or isonicotinoylhydrazine (INH), is bactericidal, easily permeates infected cells as well as the CSF, and has proved to be highly effective for the treatment of TB. It has been available since 1952 and is still the most useful and least expensive drug used in the treatment of TB. It is the drug of choice for prophylactic treatment as well as for active cases. Therapeutic efficacy is greatly enhanced when INH is used in combination with rifampin.

Adverse reactions can be severe with INH. Reversible liver damage occurs in 1% to 2% of patients younger than 65 years of age, 4% to 5% in patients older than 65 years, and is even higher in patients with alcoholism. Patients should always be alerted to the symptoms of liver toxicity, such as anorexia, nausea, vomiting, and jaundice. If these symptoms occur, INH should be stopped immediately and liver function studies done.

If liver function studies are greatly elevated beyond the normal range, INH should not be continued. If only mildly elevated, the patient is often given a half dose for 2 or 3 days. If this is tolerated, the full dose may be restarted with close monitoring for symptoms. Allergic reactions to INH include rash, drug fever, anemia, and agranulocytosis.

INH interferes with GI absorption of the vitamin pyridoxine; its use over weeks to months can lead to a deficiency state manifested as peripheral neuropathy. This is more apt to occur in persons poorly nourished, pregnant, or dependent on alcohol, but it is a risk for anyone on long-term INH therapy. It is recommended that all patients receiving INH take a daily supplement of 25–50 mg pyridoxine throughout the period of treatment.

INH is normally given at 300 mg per day for adolescents and adults; 10–15 mg/kg/day in 1 to 2 divided doses is appropriate for infants and children, with a maximum of 300 mg/day [42]. INH is taken as a single dose in the morning, and treatment continues for 6 to 9 months in most cases. INH may be prescribed during pregnancy.

Rifampin

Rifampin is bactericidal, well absorbed, and penetrates readily into cells and the CSF. Rifampin is active early against rapidly dividing organisms, yet it also retains good activity against semidormant, intracellular bacilli, an advantage in achieving late resolution of granulomatous foci of infection.

The usual dose is 10 mg/kg/day with a maximum of 600 mg/day; the dose is 10–20 mg/kg/day in a single dose for infants and children, with a maximum of 600 mg/day [42]. A combination of 300 mg rifampin and 150 mg INH is available as a single capsule under the brand name Rifamate [42]. Toxic effects are jaundice, fever, thrombocytopenia, and renal failure. Because the liver complications are similar to those with INH, attempts to reintroduce the drugs should occur one at a time, so it can more accurately be determined which drug is causing the problem.

Rifampin has several drug interactions. It accelerates metabolism of anticoagulants, oral contraceptives (effectively inactivating them), digitoxin, corticosteroids, oral hypoglycemic agents, and methadone. It also causes a decrease in vitamin D concentration. This can be problematic because vitamin D is essential to the function of macrophages, which protect against M. tuberculosis. It may be indicated to give supplements of vitamin D. Rifampin is safe to use during pregnancy.

Rifabutin

Rifabutin, a rifamycin drug, is currently only approved by the FDA for the prevention of Mycobacterium avium disease in HIV-seropositive patients. Generally, rifabutin is used in first-line treatment of TB in patients with unacceptable reactions to rifampin. The usual dosage is 300 mg/day in a single administration for adults. The appropriate dosage for children is 10–20 mg/kg/day with a 300 mg/day maximum [42]. Adverse effects are commonly mild and include hematologic toxicity, hepatoxicity, and rash. An orange/red discoloration of skin, sweat, and mucus is a universal result of the medication and resolves upon discontinuation of treatment.

Rifapentine

A newer addition to the treatment of TB, rifapentine is only used in combination with other drugs to which the isolate is susceptible. It is also limited to HIV-seronegative patients. In adults, rifapentine is usually dosed at 600 mg twice weekly during the intensive phase of short-term therapy, and 600 mg once weekly during the continuation phase [42]. Rifapentine is not approved for use in children. The adverse effects are similar to those experienced with rifampin.

It is important to note that with all of the rifamycin drugs outlined here, the known drug interactions are constantly and rapidly changing. For the most up-to-date information, please consult the CDC website at http://www.cdc.gov/tb/.

Ethambutol

A bacteriostatic agent, ethambutol inhibits the transfer of mycolic acids into the cell wall. It penetrates into most tissues, but does not always enter the CSF. It works equally well in both intracellular and extracellular organisms.

It is safe to use in pregnant patients and is generally well tolerated by most adult patients. Adverse reactions include damage to the ocular nerve, symptoms of which include color blindness, scotomas, constricted visual fields, and blurred vision. Discontinuing the drug usually eliminates the symptoms. However, continued use can cause permanent visual impairment. It is standard practice to do a baseline examination of visual acuity before beginning treatment. The risk of ocular toxicity is about 1% at the lower recommended dose of 15 mg/kg/day. Because it is often difficult to judge these changes in a child, ethambutol is generally not given to children unless the child's TB is drug resistant.

Normal dosage for adults is 15–25 mg/kg/day [42]. Some patients are given 50 mg/kg twice weekly and seem to tolerate the change in dosage without problems. Patients who have renal insufficiency should have their dosage reduced to 10 mg/kg/day. The normal dosage for children is 15–20 mg/kg to a maximum of 1 g/day [30]. Ethambutol should not be given to children younger than 13 years of age. This drug is fully dialyzable [30,32].

Pyrazinamide (PZA)

Pyrazinamide (PZA) is bactericidal and highly active against intracellular organisms. It penetrates readily into tissue, including the CSF. It is catabolized in the liver and excreted in the urine.

The major adverse reactions of PZA are hepatitis and hyperuricemia, which only rarely causes symptoms of gout. Other adverse reactions include skin rash, joint pain, and gastrointestinal distress. Because of its propensity to cause hepatotoxicity with prolonged use, PZA is primarily used in combination with INH and rifampin during the first 2 months of intensive therapy only. The usual dose of PZA for adults is 15–30 mg/kg given in a single daily dose, with a maximum dose of 2 g/day [30,42]. For children, the normal dosage is 15–30 mg/kg, not to exceed 1 g/day. Pyrazinamide is contraindicated in pregnancy because of the risk of adverse effects to the fetus [30,32]. A capsule containing 120 mg rifampin, 50 mg INH, and 300 mg PZA (brand name Rifater) may be taken to improve compliance with complex, multidrug regimens [42].

SECOND-LINE DRUGS

Streptomycin

In the past, streptomycin had been greatly effective in treating many patients with TB. However, it is no longer used routinely because of the risk for nephrotoxicity and the availability of newer alternative drugs.

The drug is given intramuscularly at about 15 mg/kg/day for adults and 20–40 mg/kg/day for children, with a maximum dose of 1 g/day for both children and adults [30,42]. In patients older than 59 years of age, the dosage is 10 mg/kg/day, with a maximum of 750 mg/day [30]. CSF penetration is poor.

Adverse reactions include renal tubular damage, hypokalemia, vestibular damage, and ototoxicity. Patients receiving streptomycin should have their hearing, balance, and serum creatinine levels monitored regularly. Allergic reactions include skin rash, drug fever, agranulocytosis, and serum sickness. Streptomycin is contraindicated in pregnancy because it is reported to damage the 8th cranial nerve in the fetus.

Ethionamide

Chemically related to INH, ethionamide is effective in controlling the tubercle bacilli but has such major side effects that as many as one-third of all patients taking it are unable to continue. These side effects include nausea, vomiting, diarrhea, excessive salivation, metallic taste, hepatotoxicity, peripheral neuropathy, and headaches. The dose is 15–20 mg/kg/day in two to three divided doses for children, with a maximum dose of 1 g/day [30,42]. The dose is also 15–20 mg/kg/day in adults, with a maximum dose of 1 g/day [30,42].

Para-Aminosalicylic Acid (PAS)

At one time used in combination with INH, PAS has effectively been replaced by ethambutol. Nearly all patients suffer from gastrointestinal symptoms, including dyspepsia, nausea, vomiting, and diarrhea. Other patients may develop hypersensitivity reactions including fever, rash, and hepatitis. The drug has a large amount of sodium, which increases fluid retention in some patients. The dose is 200–300 mg/kg/day in 2 to 4 equally divided doses for children and 8–12 g/day in 2 to 3 equally divided doses for adults [30,42].

Kanamycin and Amikacin

Amikacin is a less toxic, semisynthetic derivative of kanamycin. Similar to streptomycin in its action and side effects, most organisms that are resistant to streptomycin are susceptible to kanamycin and amikacin.

Side effects include auditory toxicity and severe nephrotoxicity. Dosage for kanamycin is 15 mg/kg in divided doses every 8 to 12 hours for children and 5–7.5 mg/kg in divided doses every 8 to 12 hours (maximum: 15 mg/kg/day) for adults [42]. Amikacin is not currently approved by the FDA for treatment of TB.

Cycloserine

Because cycloserine inhibits cell-wall synthesis and is a small molecule, it enters all body fluids. Dosage is 10–15 mg/kg/day given orally but should not exceed 1 g/day for adults; the dosage for children is 10–15 mg/kg/day in 2 divided doses, with a maximum dose of 1 g/day [30].

Adverse reactions include severe neurotoxicity, which can cause headaches, tremors, irritability, depression, anxiety, psychosis, and seizures. Discontinuing the drug may cause the symptoms to disappear, but full resolution usually takes several weeks. Understandably, cycloserine is not recommended for patients who have mental illness.

Capreomycin

A tuberculostatic, the usual dose of capreomycin is 1 g/day intramuscularly. Side effects include nephrotoxicity and ototoxicity. It is excreted in the urine, so the dosage must be reduced when there is renal failure [30,42].

Levofloxacin

Although not FDA-approved for the treatment of TB, levofloxacin is recommended by the CDC as a second-line agent for patients who do not tolerate first-line therapies [30]. The usual dose for adults with susceptible disease is 500–1000 mg/day. Levofloxacin is not approved for long-term use in children and adolescents due to concerns regarding bone and cartilage growth. However, the CDC recommends that the drug be considered in children with TB resistant to both INH and rifabutin [30]. It is favored over the other available quinolone antibiotics moxifloxacin and gatifloxacin due to its more acceptable safety profile.

Potential adverse reactions include hepatotoxicity and gastrointestinal effects (taste disturbance, nausea, diarrhea, constipation, abdominal pain, dyspepsia, and vomiting) [42]. The FDA has issued a warning for all quinolone antibiotics, including levofloxacin, stressing the risk of tendon inflammation and/or rupture in some patients; the risk is higher for those who are older than 60 years of age, organ transplant recipients, and patients on long-term corticosteroid therapy [42].

SURGICAL TREATMENT

The role of surgery for the adjunctive management of pulmonary TB has diminished considerably with the advent of antituberculous chemotherapy. It is now used only rarely, for the following indications, usually in reference to large cavitary disease:

  • Unsuccessful drug therapy

  • Removal of destroyed lung tissue

  • Persistent bronchopleural fistula

  • Intractable hemorrhage

  • Repair of postsurgical complications

On occasion, when there are conglomerate lesions in the lung and no clear diagnosis, surgery is performed to establish a definitive diagnosis and to rule out other possibilities, such as malignancy.

MDR-TB

During the 1950s and 1960s, only 2% to 3% of TB cases in the United States were resistant to antituberculous drugs. In the 1990s, that number had increased to 10%. Perhaps not coincidentally, this increase occurred along with the closing of TB sanatoriums, which greatly reduced the number of patients receiving direct supervision of their treatment. There have also been outbreaks of drug-resistant TB among groups of patients infected with HIV, immigrants from epidemic areas, and the homeless. The problem is worse in developing countries, with drug resistance as high as 60% in patients from India, China, and Russia [14].

It is difficult and expensive to treat patients with MDR-TB. The usual plan is to administer at least four drugs that have not been previously used to treat the patient or other members of the family (Table 5). If chemotherapy fails, it is sometimes necessary to surgically resect that portion of the lung that is infected [4].

TREATMENT OF MDR-TB IN ADULTS

Pattern of ResistanceSuggested RegimenDuration of Treatment
Isoniazid (with or without streptomycin)Rifampin, pyrazinamide, and ethambutol (A fluoroquinolone may strengthen the regimen for patients with extensive disease.)6 months
Isoniazid and rifampin (with or without streptomycin)A fluoroquinolone, ethambutol, pyrazinamide, and an injectable agenta, possibly with an alternative agent18 to 24 months
Isoniazid, rifampin (with or without streptomycin), and ethambutol or pyrazinamideA fluoroquinolone (and ethambutol or pyrazinamide if disease is active), an injectable agenta, and two alternative agents24 months
RifampinIsoniazid, ethambutol, and a fluoroquinolone, supplemented with pyrazinamide for the first 2 months (An injectable agenta may be included for the first 2 to 3 months for patients with extensive disease.)12 to 18 months
aInjectable agents include aminoglycosides (such as streptomycin, kanamycin, and amikacin) or capreomycin.

In 2012, the FDA approved the first new medication to treatment MDR-TB, bedaquiline. This agent represents the first new class of medications (diarylquinolines) approved to treat TB in more than 40 years [53]. It acts by inhibiting a mycobacterial enzyme necessary for replication of the mycobacteria. The drug is specifically approved as part of combination therapy to treat MDR-TB or XDR-TB when other alternatives are ineffective or unavailable. Bedaquiline is associated with significant adverse effects, including an increased risk of mortality, hepatotoxicity, and QT interval prolongation leading in some instances to death [53]. Therefore, it should be prescribed with caution. As of 2013, the CDC had not revised its treatment recommendations to include bedaquiline.

There are two different types of resistance. Primary resistance is when patients who have never been treated with antitubercular medications are resistant to treatment. This would indicate that they were directly infected with MDR-TB from contact with a person who has MDR-TB. Secondary resistance occurs during the process of therapy. The usual cause is an inadequate course of treatment. This would be the result of an error in prescribing the dosage, lack of compliance with taking the prescribed medications, or discontinuing treatment before the prescribed length of time. Some patients share their medications with family members, thinking they are saving money, but actually harm themselves and their family members, as neither receives an adequate amount of treatment [17].

Outbreaks of MDR-TB can cause havoc on immunocompromised patients. These individuals already are unable to fight infections adequately when they acquire an organism with extraordinary resistance to treatment. This is most often seen in patients with HIV. The mortality rate for these patients is 70% to 90%, with death commonly occurring only 4 to 16 weeks after diagnosis [10,17].

Part of the problem is that it takes millions of dollars and many years to develop a drug from research to the point that it can be distributed to patients in need. By that time, the specific organism in question could have mutated even further and may no longer resemble the prototype for which the drug was created [17]. In most cases, it has proved more effective to administer antibodies or other treatments hoping to strengthen the immune system.

In 2007, much attention was given the case of an American diagnosed with XDR-TB who flew on six international flights, with the potential for exposing hundreds of people to the disease. Fortunately, XDR-TB is relatively rare, and cultures obtained from the individual later demonstrated that he actually had a form of MDR-TB. However, many learned through the media coverage of this event that the government does have the power to enforce isolation or quarantine [9,16]. Also in 2007, a man with active TB was jailed because he refused to wear a mask when he was around others [28]. This serves as a reminder that basic precautions are always important.

CHEMOPROPHYLAXIS FOR TUBERCULOSIS

Those patients who are currently infected with latent or asymptomatic TB are at risk for developing an active case of the disease unless they take a course of preventive treatment. The treatment can reduce the risk of having a form of the disease recur, or it can be given to prevent an initial infection. The CDC has established the following guidelines for the use of chemoprophylaxis [35].

The main purpose of preventive therapy is to prevent latent infection from progressing to clinically active TB disease. Therefore, persons with positive tuberculin skin test results who do not have clinically active disease should be evaluated for preventive therapy.

CANDIDATES FOR PREVENTIVE THERAPY

Preventive therapy is recommended for the following persons, regardless of age, with a positive tuberculin test result of 5 mm or greater:

  • Persons with HIV infection*

  • Close contacts of a TB case*

  • Patients who have had organ transplants and other immunosuppressed patients (receiving the equivalent of ≥15 mg/day of prednisone for at least 1 month)

  • Persons with fibrotic changes on chest radiograph consistent with old TB disease

  • Persons receiving specialized treatment for rheumatoid arthritis or Crohn's disease

Persons in the following groups should be considered for preventive therapy if their reaction to the tuberculin test is 10 mm or greater:

  • Recent arrivals to the United States (within the last 5 years) from high-prevalence countries

  • Persons who inject illicit drugs

  • Residents and employees of high-risk congregate settings

  • Mycobacteriology laboratory personnel

  • Persons with medical conditions that make them high risk (i.e., diabetes, silicosis, cancer of the head and neck, end-stage renal disease, intestinal bypass or gastrectomy, chronic malabsorption syndromes)

  • Children younger than 4 years of age, or children and adolescents exposed to adults in high-risk categories

*In some circumstances, persons in these categories may be given preventive therapy in the absence of a positive tuberculin test result. For example, tuberculin-negative children and adolescents who are close contacts of infectious persons and who may be infected but whose skin test result has not yet converted to positive may be given preventive therapy. If therapy is initiated, a repeat tuberculin skin test should be performed 3 months after contact has been broken with the infectious source. If the reaction is positive, therapy should be continued. If the reaction is negative, therapy may be discontinued if contact with the infectious source case continues to be broken. In addition, persons who are immunosuppressed, especially HIV-infected persons, may have a negative tuberculin skin test reaction because they are anergic. All HIV-infected persons who are close contacts of persons who have infectious TB should be administered a full course of preventive therapy—regardless of tuberculin skin test results or prior courses of chemoprophylaxis—after the diagnosis of active tuberculosis has been excluded [22].

The preventive treatment of choice for adults with latent TB infection is isoniazid 5 mg/kg daily for 6 or 9 months; if a daily medication regimen is unlikely to be adhered to, a twice weekly regimen may also be used [51]. The dose for children is 10–20 mg/kg. The alternative adult regimen is rifampin 10 mg/kg daily for 4 months [51]. Concerns regarding severe and potentially fatal hepatotoxicity have led to the recommendation not to use combination rifampin-pyrazinamide for these patients [52].

VACCINATION

Although not routinely used in the United States, many other countries, particularly developing countries with limited financial resources, have used the BCG vaccine to control TB. The WHO estimates that more than one billion people have received BCG, making it one of the most widely used vaccines in the world. Studies have shown BCG to have variable efficacy against all TB strains. Analysis of these studies is difficult due to the fact that several different strains of the vaccine are used worldwide. There are serious concerns about its use in immunocompromised patients [20].

Generally, the vaccine is given to infants and children who have (1) a negative tuberculin skin test; (2) are at high risk of continuing exposure to persons with infectious TB; (3) cannot be placed on long-term preventive therapy; or (4) are continually exposed to persons with INH- or rifampin-resistant disease. As BCG is a live, attenuated vaccine, administration will cause a person to convert from a negative TB skin test to a positive one, making any subsequent skin testing useless.

A team led by Marcus Horwitz from the UCLA School of Medicine is now testing a new vaccine, rBCG30, a recombinant form of BCG. It is hoped that, at the very least, this vaccine would avoid the side effects of BCG. This new vaccine is not live bacteria, as in BCG, but instead is made from bacterial proteins.

When M. tuberculosis enters the lungs, it invades the macrophages. The theory behind the rBCG30 vaccine is that a macrophage responds to an invading bacterium by displaying protein fragments from the invader on its cell surface. Those fragments act as warning flags that encourage helper T-cells to mount an immune response. It is theorized that the macrophages will display the injected proteins even though the bacillus itself is not present. This would create a population of immune cells prepared to recognize and destroy M. tuberculosis if it does appear in the body. Clinical human studies of the vaccine are continuing [44].

CHILDREN AND TB

Children are vulnerable to TB for a variety of reasons. Many children who live in poverty do not receive sufficient nutrition to adequately build their immune systems. They are also less aware of hygiene, so are often exposed to coughs, sneezes, laughs, and other risks from those who are infected. If their parents or other family members are infected with TB, it is almost impossible for the child not to become infected as well.

Young infants may not cough, which is often the main symptom associated with TB. In older children (3 to 15 years of age), TB is typically asymptomatic but is discovered due to a positive skin test or chest x-ray. Older children and adolescents have symptoms similar to adults and are also more likely to develop a more severe case of the disease, with cavitation and TB of other organs.

Tuberculous meningitis is a frightening complication that is experienced most often in developing countries. If the child lives in an area where drug therapy can begin promptly, their life may be saved. Otherwise, there is a very high mortality rate for children who develop tuberculous meningitis.

Prophylactic treatment for children of TB-infected patients is highly recommended. The treatment regimens most effective for children are similar to those used for adult TB patients. Nine-month treatment with INH and rifampin proves successful in most children, and in some cases, only six months is required. Children taking INH do not seem to develop the transient elevation of liver enzymes seen in adults, so liver function does not have to be monitored unless the patient has a history of other liver disease. As noted, ethambutol is usually avoided in children younger than 7 years of age because it is difficult to properly monitor visual acuity and color perception in children that young. It is rare for children to develop drug-induced hepatitis, so monthly follow-ups do not include liver function studies, as in adults. Good indicators of improvement are increased appetite, weight gain, and lower evening temperatures.

Studies have shown that 50% of infants born to mothers with active TB develop the disease during their first year of life. It is therefore recommended that these children receive prophylactic drug therapy. Newborn infants whose mothers have positive skin tests and no evidence of disease should be skin tested. The first test is applied at 4 to 6 weeks of age, then at 3 to 4 months of age, and again at one year [18]. Unfortunately, studies have indicated that positive skin tests are rare in congenital TB cases. It is important, therefore, to recognize the signs and symptoms of the disease, including abnormal chest radiography, abdominal distension, skin lesions, ear discharge, hepatosplenomegaly, respiratory distress, and fever [27].

TUBERCULOSIS DURING PREGNANCY

When a pregnant woman is diagnosed with TB, treatment is usually postponed until after the first trimester due to concerns about the use of medications during pregnancy and the risk of hepatotoxicity [22]. Preventive therapy is considered both safe and appropriate for women who are breastfeeding. Most antituberculous drugs are excreted in breast milk, but there are no studies showing that this causes any harm to the infant [43]. However, some feel it is safest to have the mother take her medications after breastfeeding and substitute a bottle for the feeding immediately following dosing.

CARE OF THE PATIENT WITH TB

Hospital admission requirements are based on actual symptoms that support the medical necessity of acute hospitalization, not merely by the diagnosis of TB. This usually, but not exclusively, includes severe shortness of breath with abnormal arterial blood gases, undiagnosed fevers of unknown origin, invasive procedures in a debilitated patient, and establishment of a drug regimen. TB patients are more likely treated on an outpatient basis.

INPATIENT CARE

One of the most important actions healthcare providers can take is to prevent the spread of TB in their own facilities. Patients with known or suspected TB should be admitted into private rooms with negative air pressure, with air being exhausted directly outside six times per hour. Air from that room should not be circulated into any other rooms in the hospital.

Some hospitals do not have negative pressure rooms, and if that is the case, ultraviolet light and HEPA filters should be used. Germicidal lamps kill many bacteria, including the tubercle bacilli. They can be placed in ceiling or wall fixtures or within the air ducts of recirculating ventilation systems. HEPA filters remove particles greater than 3 microns in diameter. Healthcare workers entering the room should wear respirators that have been certified by the National Institute for Occupational Safety and Health.

The CDC established a category-specific isolation system, which identifies five major routes of transmission [33]:

  • Contact transmission (direct and indirect)

  • Droplet transmission

  • Airborne transmission

  • Common vehicle transmission

  • Vector-borne transmission

Ineffective Breathing Pattern

In cases of ineffective breathing, the patient may have decreased lung volume and lung capacity due to the TB. Increased metabolism may also be a factor if there have been high fevers. Some patients may have a frequent productive cough and hemoptysis. These issues are defined by increased respiratory rate, the use of accessory muscles to breathe, retractions, diaphoresis, and tachycardia.

The anticipated outcome is that the patient's breathing pattern returns to normal with a regular respiratory rate and pattern. As part of the initial evaluation, the medical professional should:

  • Assess depth, rate, and character of respirations

  • Check for increased work of breathing

  • Assess the cough

  • Assess the secretions (include color, amount, and consistency)

  • Monitor vital signs

  • Auscultate the lungs for breath sounds

  • Monitor arterial blood gases as indicated

The therapeutic interventions are to administer oxygen as necessary, push fluids and promote hydration to liquefy secretions, and maintain semi-Fowler's position to ease breathing.

Acute Infection

Active pulmonary TB causes high fevers and purulent or bloody sputum. The desired outcome in these cases is that the infection is treated effectively, thereby reducing the risk of spreading the disease to others. This is evidenced by negative culture reports and absence of fever.

Ongoing assessments include:

  • Assessing the secretions for amount, color, and consistency

  • Monitoring temperature at least every 4 hours

  • Monitoring sputum culture reports

Therapeutic interventions include:

  • Maintaining respiratory isolation

  • Disposing of secretions properly

  • Teaching patient handwashing techniques

  • Administering medications as ordered

Knowledge Deficit

Many patients will not be knowledgeable about the disease process or the current and most effective treatment modalities. They may be aware only of the stigma that was associated with TB years ago. Healthcare professionals may become aware of this knowledge deficit by hearing patients verbalize incorrect information, ask many questions, or be noncompliant.

Therapeutic interventions include:

  • Teaching patients about TB (detection, transmission, signs and symptoms of relapse, treatment, prevention, and compliance)

  • Teaching patients how to follow their regimen after they are discharged from acute hospitalization

  • Reinforcing isolation technique

  • Explaining the importance of maintaining good nutrition

  • Encouraging patients to stop smoking

Other possible afflictions that may be present in patients with TB, depending upon the seriousness of their disease, include anxiety, ineffective airway clearance, impaired gas exchange, alteration in comfort (pain), ineffective individual coping, ineffective family coping, sleep pattern disturbance, ineffective management of therapeutic regimen, activity intolerance, fatigue, alteration in nutrition, or spiritual distress.

Case Management

Case management of TB patients is one of the most rapidly growing and highly effective methods of care available. The case manager can maintain close ties with the patient and family, participating in directly observable therapy, counting pills, and/or other methods to maintain compliance for the necessary length of time. Some case managers are working for the insurance carrier, others for a home health agency, still others for a public health service clinic or other outreach program. All of these settings provide the opportunity for the case manager to assess the needs of the patients and provide those services that will best help meet those needs.

OUTPATIENT CARE

The home health professional or other outpatient caregiver has a major investment in the TB patient. He/she will hopefully have a long association with this patient, as therapy can last 9 months or longer. During this time, there are many topics that need attention, primary among them is compliance with the drug regimen.

It is important for healthcare professionals to give both the patient and the caregiver verbal and written instructions outlining which medications should be taken and how often. Some even make a poster with sample tablets glued to it, so the patient has a constant visual reminder of what needs to be taken. These instructions should also include the name and telephone number of a physician or nurse to call if questions arise.

Patients and caregivers should be taught the signs and symptoms of drug toxicity and side effects, such as those with rifampin, which causes feces, saliva, tears, and urine to be a red-orange color. It is important to strongly reinforce that they must not stop taking the medications without permission.

Some patients may have financial hardships as a result of paying for the continuing prescriptions, but not all will feel comfortable mentioning that fact. Depending upon the type of insurance coverage the patient has, the cost of the medications can range from minimal to major. There is also the cost of lost wages, hospital care, and physician's fees to consider. Because of this, it is important that all patients be given information about where they can obtain financial assistance or free medications in the community.

The home should be assessed for anticipation of possible problems. If the home is located in an area with significant air pollution, for example, it can be expected that the patient's condition would not improve as rapidly as if he or she were living in a cleaner environment. Dietary recommendations are usually for a high-protein, high-carbohydrate diet. If necessary, the patient may do better with several small meals a day, as the large number of medications being taken often suppresses the appetite.

The diagnosis of TB has a major impact on the patients who receive it and upon their families. There is a change in their lifestyle, an economic impact, and emotional issues to confront. Frequent medical appointments will probably mean absences from school and/or work, again adding stressors to the family. Successful management of these problems requires extensive education and a commitment from the staff as well as the family. The attitude of the healthcare professional interfacing with the patient and family will greatly influence the compliance of the patient. Additionally, children being treated are more likely to have a positive attitude if their parents thoroughly understand the seriousness of the disease and the importance of treatment.

Patients should be encouraged to verbalize their fears and concerns, which helps them to confront and resolve them. For example, some patients still believe there is a social stigma attached to the development of TB. They are embarrassed to be infected and angry that they have this burden in their life. Simply talking about their concerns can dispel some of the worry. Still others do better in support groups formed by the hospitals and clinics.

CASE STUDY

Patient A is a registered nurse, 40 years of age, working in southern California at a large medical center. The hospital is located in an area with a large population of immigrants from southeast Asia, so she has cared for many of those patients during her 12 years of work on the surgical floor.

Last year, she transferred to the hospital's home health agency to work with hospice patients. She had suffered through her mother's death from breast cancer only months before, and she was also hoping to get more regular hours to be able to spend more time with her teenage son.

About the same time, her husband was "downsized out" of his job as an aerospace engineer. It was a difficult time for the entire family, but Patient A felt perhaps the greatest stress of all. She was trying to overcome her grief for her mother; give attention to her father, son, and husband; do well in her new position; and work extra hours when necessary to help with their financial woes. There never seemed to be any time for her to relax.

In December, she got a cold that developed into bronchitis and seemed to hang on forever. She was often awake at night, either coughing or having drenching night sweats. Finally, in April, she went to her family practice physician to have it checked.

Her chest x-ray showed questionable cavitary lesions in her right upper lobe. Although Patient A's first panicky fear was that she had cancer, her physician investigated further, ordering a TB skin test and sputum for acid-fast bacilli. Both tests were positive.

She was started on INH, 300 mg/day, and rifampin, 600 mg/day. She was shocked by her diagnosis and embarrassed to tell her friends that she, a nurse who should know good universal precautions technique, would develop a contagious disease.

Patient A, however, is the perfect candidate for infection. Working in a community with a large immigrant population from underdeveloped countries means she had a greater risk for exposure than other nurses. Although she worked on a surgical unit, many of the patients were possibly infected.

Her healthy immune system successfully suppressed the initial infection, but when the stressors in her life mounted, a breakdown occurred. Perhaps the combined effect of a parent's death, change in financial status, family concerns, new job demands, and lack of sufficient rest led, in time, to a subtle depression in immune function and reactivation of latent TB. Any of these alone might have been insufficient to cause the immune system to fail, but grouped together, it was only a matter of time until the latent infection re-emerged. On antituberculous chemotherapy, proper nutrition, and a brief period of rest, she recovered without complication.

Works Cited

1. American Thoracic Society. News Release: New Tuberculosis Blood Test Spots Hidden Infection. Available at http://www.washingtonpost.com/wp-dyn/content/article/2007/03/15/AR2007031500939.html. Last accessed August 13, 2013.

2. World Health Organization. XDR-TB: Extensively Drug Resistant Tuberculosis. Available at http://www.who.int/tb/challenges/xdr/en/index.html. Last accessed August 13, 2013.

3. Kim L, Moonan PK, Yelk Woodruff RS, Kammerer JS, Haddad MB. Epidemiology of recurrent tuberculosis in the United States, 1993–Int J Tuberc Lung Dis. 2013:17(3):357-360.

4. Centers for Disease Control and Prevention. Extensively drug-resistant tuberculosis—United States, 1993–2006. MMWR. 2007;56(11):250-253.

5. Centers for Disease Control and Prevention. Extensively Drug-Resistant Tuberculosis (XDR-TB). Available at http://www.cdc.gov/TB/publications/factsheets/drtb/xdrtb.htm. Last accessed August 13, 2013.

6. Centers for Disease Control and Prevention. Interferon-Gamma Release Assays (IGRAs): Blood Tests for TB Infection. Available at http://www.cdc.gov/tb/publications/factsheets/testing/IGRA.htm. Last accessed August 13, 2013.

7. Epstein L. Tuberculosis among health care workers. Am J Nurs. 2007;107:21.

8. Centers for Disease Control and Prevention. TB Drug Resistance in the U.S. Available at http://www.cdc.gov/nchhstp/newsroom/docs/TB-Drug-Resistance-Factsheet.pdf. Last accessed August 13, 2013.

9. Centers for Disease Control and Prevention. Public Health Investigation Seeks People Who May Have Been Exposed To Extensively Drug Resistant Tuberculosis (XDR-TB) Infected Person. Press Conference Transcript. Available at http://www.cdc.gov/media/transcripts/2007/t070529.htm. Last accessed August 13, 2013.

10. World Health Organization. Frequently Asked Questions about TB and HIV. Available at http://who.int/tb/challenges/hiv/faq/en/. Last accessed August 13, 2013.

11. Eckler JA. Myths and facts…about tuberculosis. Nursing. 1995;25(9):17.

12. Gasner MR, Maw KL, Feldman GE, Fujiwara PI, Frieden TR. The use of legal action in New York City to ensure treatment of tuberculosis. N Engl J Med. 1999;340(5):359-366.

13. Centers for Disease Control and Prevention. Trends in tuberculosis incidence—United States, 2006. MMWR. 2007;56:245-250.

14. World Health Organization. Global Tuberculosis Report 2012. Available at http://www.who.int/tb/publications/global_report/en/. Last accessed August 13, 2013.

15. Petrec CA. Sputum testing for TB: getting good specimens. Am J Nurs. 1996;96(2):14.

16. Centers for Disease Control and Prevention. Update on CDC Investigation into People Potentially Exposed to Patient with Extensively Drug-Resistant TB. Press Conference Transcript. Available at http://www.cdc.gov/media/transcripts/2007/t070601.htm. Last accessed August 23, 2010.

17. Simpkins S, Hench C. "Super bugs:" emerging pathogens and multidrug-resistant organisms. NURSEweek. 1996;8(13):8-9.

18. Speck WT. Tuberculosis. In: Kliegman RM, Behrman RE, Jenson HB, Stanton BF (eds). Nelson Textbook of Pediatrics. 18th ed. Philadelphia, PA: WB Saunders Co.; 2007.

19. Sizemore CF, Laughon BE, Fauci AS. Successful Public-Private Partnership Between NIAID and Sequella Yields Promising New TB Drug for Clinical Testing. Available at http://www.niaid.nih.gov/news/newsreleases/2006/Pages/sq109.aspx. Last accessed August 13, 2013.

20. Centers for Disease Control and Prevention. Tuberculosis Information for International Travelers. Available at http://www.cdc.gov/tb/publications/factsheets/general/tbtravelinfo.htm. Last accessed August 13, 2013.

21. Wang S, Carruthers B, Turner J. The influence of increasing age on susceptibility of the elderly to tuberculosis. Open Longev Sci. 2012;6:73-82.

22. Raviglione MC, O'Brien RJ. Tuberculosis. In: Longo DL, Fauci AS, Hauser SL, Jameson JL, Loscalzo J (eds). Harrison's Principles of Internal Medicine. 18th ed. New York, NY: McGraw-Hill; 2012: 1340-1358.

23. Centers for Disease Control and Prevention. Tuberculosis. Available at http://www.cdc.gov/tb/publications/factsheets/statistics/TBTrends.htm. Last accessed August 13, 2013.

24. Centers for Disease Control and Prevention. Reported Tuberculosis in the United States, 2011. Available at http://www.cdc.gov/tb/statistics/reports/2011/pdf/report2011.pdf. Last accessed August 13, 2013.

25. Centers for Disease Control and Prevention. Slide Set: Epidemiology of Pediatric Tuberculosis in the United States, 1993–Available at http://www.cdc.gov/tb/publications/slidesets/pediatrictb/d_link_text.htm. Last accessed August 13, 2013.

26. Soini H, Musser JM. Molecular diagnosis of mycobacteria. Clinical Chemistry. 2001;47(5):809-814.

27. Cantwell MF, Shehab ZM, Costello AM, et al. Congenital tuberculosis. N Engl J Med. 1994;330(15):1051-1054.

28. National Commission on Correctional Health Care. TB patient in compulsory detention. Correct Care. 2007;21(1):9.

29. Slovis BS, Plitman JD, Haas DW. The case against anergy testing as a routine adjunct to tuberculin skin testing. JAMA. 2000;283(15):2003-2007.

30. Centers for Disease Control and Prevention. Treatment of tuberculosis: American Thoracic Society, CDC, and Infectious Diseases Society of America. MMWR. 2003;52(RR11):1-77.

31. Snider GL. Tuberculosis then and now: a personal perspective on the last 50 years. Ann Intern Med. 1997;126(3):237-243.

32. Thomson PDR. Physicians' Desk Reference. 61st ed. Montvale, NJ: Thomson Healthcare; 2007.

33. York N. Management of clients with parenchymal and pleural disorders. In: Black JM, Hawks JH, Keene AM (eds). Medical-Surgical Nursing: Clinical Management for Positive Outcomes. 6th ed. Philadelphia, PA: WB Saunders Co.; 2001: 1716-1723.

34. Centers for Disease Control and Prevention. Core Curriculum on Tuberculosis: What the Clinician Should Know. Available at http://www.cdc.gov/tb/education/corecurr/pdf/corecurr_all.pdf. Last accessed August 13, 2013.

35. Centers for Disease Control and Prevention. Infection Control in Health-Care Settings. Available at http://www.cdc.gov/tb/publications/factsheets/prevention/ichcs.htm. Last accessed August 23, 2010.

36. Alexander KA, Laver PN, Michel AL, et al. Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis. 2010;16(8):1296-1299.

37. Cousins DV, Bastida R, Cataldi A, et al. Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol. 2003;53:1305-1314.

38. van Soolingen D, Hoogenboezem T, de Haas PEW, et al. A novel pathogenic taxon of the Mycobacterium tuberculosis complex, canetti: characterization of an exceptional isolate from Africa. Int J Syst Bacteriol. 1997;47(4):1236-1245.

39. Aranaz A, Pavlik I, Niemann S, et al. Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping. J Clin Microbiol. 2005;43(10):4984-4992.

40. Centers for Disease Control and Prevention. Anergy skin testing and preventive therapy for HIV-infected persons: revised recommendations. MMWR. 1997;46(RR15):1-10.

41. Centers for Disease Control and Prevention. Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR. 2005;54(RR15):49-55.

42. LexiComp Online. Available at http://online.lexi.com. Last accessed August 13, 2013.

43. Tran JH, Montakantikul P. The safety of antituberulosis medications during breastfeeding. J Hum Lact. 1998;14(4):337-340.

44. Horwitz MA, World Health Organization. The rBCG30 vaccine. Available at http://www.who.int/vaccine_research/diseases/tb/vaccine_development/rbcg30/en/index.html. Last accessed August 13, 2013. .

45. Breen RAM, Barry SM, Smith CJ, et al. The clinical application of a rapid lung-oriented TB immunoassay in individuals with possible tuberculosis. Thorax. 2008;63:67-71.

46. Centers for Disease Control and Prevention. Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR. 2009;58(1):7-10.

47. Reither K, Saathoff E, Jung J, et al. Evaluation of Diagnos TB AG, a flow-through immunoassay for rapid detection of pulmonary tuberculosis. Int J Tuberc Lung Dis. 2010;14(2):238-240.

48. Mazurek GH, Jereb J, Vernon A, LoBue P, Goldberg S, Castro K. Updated guidelines for using interferon gamma release assays to detect Mycobacterium tuberculosis infection—United States, 2010. MMWR Rec Report. 2010;59(RR5):1-25.

49. U.S. Food and Drug Administration. Medical Devices: T-Spot.TB-P070006. Available at http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm074013.htm. Last accessed August 13, 2013.

50. Winn RE, Prechter GC. Pulmonary tuberculosis. In: Hoperich PD, et al. (eds). Infectious Diseases. 5th ed. Philadelphia, PA: Lippincott; 1994.

51. Centers for Disease Control and Prevention. Targeted tuberculin testing and treatment of latent tuberculosis infection.MMWR Recomm Rep. 2000;49(RR6):1-51.

52. Centers for Disease Control and Prevention. Update: adverse event data and revised American Thoracic Society/CDC recommendations against the use of rifampin and pyrazinamide for treatment of latent tuberculosis infection—United States, 2003. MMWR. 2003;52(31):735-739.

53. U.S. Food and Drug Administration. FDA News Release: FDA Approved First Drug to Treat Multi-Drug Resistant Tuberculosis. Available at http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333695.htm. Last accessed January 3, 2013.

54. Centers for Disease Control and Prevention. Trends in tuberculosis—United States, 2012. MMWR. 2013;62(11):201-205.

55. Centers for Disease Control and Prevention. A New Tool to Diagnose Tuberculosis: The Xpert MTB/RIF Assay. Available at http://www.cdc.gov/tb/publications/factsheets/testing/xpert_mtb-rif.htm. Last accessed May 7, 2015.

Evidence-Based Practice Recommendations Citations

1. National Collaborating Centre for Chronic Conditions. Tuberculosis: Clinical Diagnosis and Management of Tuberculosis, and Measures for Its Prevention and Control. London: National Institute for Health and Clinical Excellence; 2011. Summary retrieved from National Guideline Clearinghouse at http://www.guideline.gov/content.aspx?id=34833. Last accessed September 17, 2013.

2. Mazurek GH, Jereb J, Vernon A, et al. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection—United States, 2010. MMWR. 2010;59(RR5):1-25. Summary retrieved from National Guideline Clearinghouse at http://www.guideline.gov/content.aspx?id=23847. Last accessed September 17, 2013.

3. World Health Organization. Guidelines for the Programmatic Management of Drug-Resistant Tuberculosis. Geneva: World Health Organization; 2011. Summary retrieved from National Guideline Clearinghouse at http://www.guideline.gov/content.aspx?id=34949. Last accessed September 17, 2013.


Copyright © 2013 NetCE, P.O. Box 997571, Sacramento, CA 95899-7571
Mention of commercial products does not indicate endorsement.